The pivotal role of high‐resolution mass spectrometry in the study of grape glycosidic volatile precursors for the selection of grapevines resistant to mildews

Author:

De Rosso Mirko1,Panighel Annarita1,Migliaro Daniele1,Possamai Tyrone1,De Marchi Fabiola1,Velasco Riccardo1,Flamini Riccardo1ORCID

Affiliation:

1. Council for Agricultural Research and Economics ‐ Research Centre for Viticulture and Enology (CREA‐VE), Chemistry & Metabolomics Lab Treviso Italy

Abstract

AbstractA breeding program to produce new grape varieties tolerant to main vine fungal pathogens (Plasmopara viticola and Erysiphe necator) is carrying out by crossing Vitis vinifera cv. “Glera” with resistant genotypes such as “Solaris,” “Bronner,” and “Kunleany.” Firstly, resistance gene‐based markers analyses allowed the identification of five genotypes, which have inherited the resistance loci against mildews. To select those that also inherited the phenotype as close as possible to ‘Glera’ suitable to be introduced in the Prosecco wine production protocols, the grape glycosidic derivatives were studied by UHPLC/QTOF mass spectrometry. Targeted identification of the metabolites was performed using a database expressly constructed by including the glycosidic volatile precursors previously identified in grape and wine. A total of 77 glycosidic derivatives including many aroma precursors and some variety markers, were identified. Original resistant genotypes had distinct metabolomic profiles and different to ‘Glera’, while the crossings showed varying similarity degrees to V. vinifera parent. Findings demonstrated the Glera × Bronner and Glera × Solaris crossings are more suitable to produce high‐sustainable Prosecco wines. Coupling of glycosidic volatile precursors profiling to multivariate statistical analysis was effective for phenotypic characterization of grapes and to evaluate their enological potential.

Publisher

Wiley

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3