Determination of phase diagram of polyolefin blend nanocomposites by rheological approach: Influence of rheological method and nanoparticles on shifting the phase transition boundary

Author:

Hosseiny Seyed Majid1,Jafari Seyed Hassan2,Hemmati Farkhondeh3,Kalaee Mohammad Reza1,Khonakdar Hossein Ali4ORCID

Affiliation:

1. Faculty of Engineering, Department of Polymer Engineering, South Tehran Branch Islamic Azad University Tehran Iran

2. School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran

3. Caspian Faculty of Engineering, College of Engineering University of Tehran Guilan Iran

4. Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran

Abstract

AbstractIn this research, by using different rheometric methods, the temperatures of phase transition for upper critical solution temperature phase diagram of polyethylene (PE) and poly(ethylene‐co‐vinyl acetate) (EVA) blends and filled systems with organically‐modified nanoclay (ONC) were measured. Since the PE/EVA‐based mixtures are widely applied in the film and foam industries, the evaluation of the phase behavior of these mixtures is of great importance. Microscopic observations show that ONC nanoparticles have a compatibilization role on the biphasic microstructure of PE/EVA. ONC nanoparticles have a remarkable impact on the viscoelastic properties of the EVA phase, leading to a reduction in the asymmetry of the viscoelastic properties of the two polymeric phases. The findings of this work focused on the isochronal dynamic temperature sweep tests on the well‐mixed and phase‐separated nanofiller‐filled systems with different cooling/heating rates indicated that these series of experiments did not have the necessary efficiency to determine the phase separation boundary and spinodal temperatures in thermodynamically equilibrium conditions. By using Han plot and dynamic temperature sweep tests at the minimum possible heating rate, 0.25 K/min, it was proved that by adding nanoparticles to PE/EVA blends, the area of well‐mixed region of the phase diagram did not show a significant increment. The pinning effects of nanoparticles on the polymeric chains and correspondingly, the reduction of molecular dynamics mainly affect the phase separation phenomenon.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3