Using decomposition of the nonlinear operator for solving non‐differentiable problems

Author:

Villalba Eva G.1ORCID,Hernandez Miguel2,Hueso Jose L.1,Martínez Eulalia1ORCID

Affiliation:

1. Instituto Universitario de Matemática Multidisciplinar Universitat Politècnica de València Valencia Spain

2. Department of Mathematics and Computation University of La Rioja Logroño Spain

Abstract

Starting from the decomposition method for operators, we consider Newton‐like iterative processes for approximating solutions of nonlinear operators in Banach spaces. These iterative processes maintain the quadratic convergence of Newton's method. Since the operator decomposition method has its highest degree of application in non‐differentiable situations, we construct Newton‐type methods using symmetric divided differences, which allow us to improve the accessibility of the methods. Experimentally, by studying the basins of attraction of these methods, we observe an improvement in the accessibility of the derivative‐free iterative processes that are normally used in these non‐differentiable situations, such as the classic Steffensen's method. In addition, we study both the local and semilocal convergence of the considered Newton‐type methods.

Funder

Ministerio de Economía y Competitividad

Publisher

Wiley

Subject

General Engineering,General Mathematics

Reference24 articles.

1. A convergence theorem for Newton-like methods under generalized Chen-Yamamoto-type assumptions

2. On Steffensen’s method on Banach spaces

3. Optimal order of one‐point and multipoint iteration;Kung H. T.;Comput. Sci. Dep. Paper,1973

4. A Steffensen's type method in Banach spaces with applications on boundary-value problems

5. A new convergence theorem for Steffensen's method on Banach spaces and applications;Argyros I. K.;Southwest J. Pure Appl. Math.,1997

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3