Design, synthesis, and evaluation of high‐performing anticorrosive polyurethane coatings with inbuilt redoxable oligomeric aniline segments

Author:

Paradhakshina Ermiya Prasad12,Arukula Ravi3,Palanisamy Aruna2,Narayan Ramanuj12,Rao Chepuri R. K.12ORCID

Affiliation:

1. Department of Polymers & Functional Materials (PFM) CSIR‐Indian Institute of Chemical Technology (IICT) Hyderabad Telangana India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India

3. Department of Chemistry Anurag University Hyderabad Telangana India

Abstract

AbstractThis paper presents, a facile route for the synthesis of electroactive hybrid polyurethane‐urea's (EPUU) using back‐bone modification with diamine‐capped trianiline (DCTA) and diamine‐capped tetraaniline (DCTAni) oligomers. These EPUUs were loaded with different weight percentages (12.5, 25, and 50) of DCTA and DCTAni and named PU‐DCTA (12.5, 25, and 50) and PU‐DCTAni (12.5, 25, and 50), respectively. The formation of oligomers and their EPUUs were confirmed by using formal characterizations such as FTIR, HRMS, UV–Visible spectroscopies, and electrochemical studies. TGA, DSC, and tensile studies were conducted on the cured films to better understand the structure and property relations. The mechanical and thermal properties of EPUU films are as high as 60.0 MPa tensile strength and T5% at 322°C, and the adhesion strength of 300‐μm films on mild steel was observed as 533 psi. Tafel polarization and electrochemical impedance spectroscopy (EIS) measurements were used to determine these polymers' anti‐corrosive capabilities. An accelerated salt‐spray test that revealed the coatings are stable for up to 600 h when exposed to 5% NaCl fog. The high corrosion resistance observed for PU‐DCTAni was found to be 6.874 × 10−6 mm/year from the Tafel polarization test, and its high polarization resistance was found to be up to 55.912 MΩ.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3