PubPredict: Prediction of progression and survival in oncology leveraging publications and early efficacy data

Author:

Zhang Jianqi1ORCID,Guo Yufei2,Zhou Junyi1,Rasmussen Hans Erik1ORCID

Affiliation:

1. Amgen Inc. Thousand Oaks California USA

2. Department of Statistics George Washington University Washington DC USA

Abstract

AbstractIn oncology/hematology early phase clinical trials, efficacies were often observed in terms of response rate, depth, timing, and duration. However, the true clinical benefits that eventually support registrational purpose are progression‐free survival (PFS) and/or overall survival (OS), the follow‐up of which are typically not long enough in early phase trials. This gap imposes challenges in strategies for late phase drug development. In this article, we tackle the question by leveraging published study to establish a quantitative link between early efficacy outcomes and late phase efficacy endpoints. We used solid tumor cancer as disease model. We modeled the disease course of a RECISTv1.1 assessed solid tumor with a continuous Markov chain (CMC) model. We parameterize the transition intensity matrix of a CMC model based on published aggregate‐level summary statistics, and then simulate subject‐level time‐to‐event data. The simulated data is shown to have good approximation to published studies. PFS and/or OS could be predicted with the transition intensity matrix modified given clinical knowledge to reflect various assumptions on response rate, depth, timing, and duration. The authors have built a R shiny application named PubPredict, the tool implements the algorithm described above and allows customized features including multiple response levels, treatment crossover and varying follow‐up duration. This toolset has been applied to advise phase 3 trial design when only early efficacy data are available from phase 1 or 2 studies.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Inference of A Unified Estimand under Survival Models with Cure Fraction;The New England Journal of Statistics in Data Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3