Transcriptomic landscape of endothelial cells: Key tumor microenvironment components indicating variable clinical outcomes in pancreatic ductal adenocarcinoma

Author:

Xie Peng12ORCID,Tan Si‐Yuan12,Li Hai‐Feng12,Tang Hao‐Dong12,Zhou Jia‐hua12

Affiliation:

1. Department of Surgery, School of Medicine Southeast University Nanjing China

2. Department of Hepato‐Pancreatico‐Biliary Surgery Zhongda Hospital Southeast University Nanjing China

Abstract

AbstractEndothelial cells (ECs) present in the tumor microenvironment (TME) exhibit significant diversity that may impact the efficacy of anti‐tumor treatments. Thus, our study sought to elucidate the various clusters of ECs present in pancreatic ductal adenocarcinoma (PDAC) and explore their possible interactions and influence on clinical outcomes. We obtained single‐cell transcriptome data from 24 PDAC tumors and 11 normal pancreases, minimizing any batch effects between samples. Next, we compared the relative abundance of various ECs clusters across distinct sample types. Pseudo‐time analysis was employed to investigate the differentiation origin of ECs. A variety of bioinformatics methods were used to investigate potential communication between ECs and malignant cells, as well as assess metabolic changes, pathway alterations, and immune‐related markers expression within distinct EC clusters. Lastly, we investigated the impact of particular ECs clusters on patient prognosis in bulk transcriptome data. Our study identified seven distinct clusters of ECs, denoted as CA4+ ECs, MMP2+ ECs, SPP1+ ECs, MT1F+ ECs, CCL5+ ECs, RGS5+ ECs, and TYROBP+ ECs. Pseudo‐time analysis suggested that the loss of CA4+ ECs and MT1F+ ECs may promote malignant progression. Cell communication elucidated that MT1F+ ECs exhibited the strongest outgoing interaction strength, whereas RGS5+ ECs displayed the strongest incoming interaction strength. Furthermore, TYROBP+ ECs exhibited greater metabolic activity, and notably, CCL5+ ECs displayed increased expression of immune‐related molecules. Lastly, across cohorts of bulk transcriptome levels, CA4+ ECs, MT1F+ ECs, and RGS5+ ECs consistently demonstrated prognostic indicative effects. PDAC patients exhibit the presence of seven distinct EC clusters, each demonstrating significant metabolic and immunological heterogeneity. Targeted therapeutic approaches directed toward CA4+ ECs and MT1F+ ECs may prove advantageous in addressing challenges associated with PDAC treatment. Additionally, variations in the relative abundance of CA4+ ECs, MT1F+ ECs, and RGS5+ ECs were indicated as predictive of patient prognosis.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3