Mycorrhizal fungal and tree root functional traits: Strategies for integration and future directions

Author:

Schaffer‐Morrison Samuel A. Z.1,Zak Donald R.12ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA

2. School for Environment and Sustainability University of Michigan Ann Arbor Michigan USA

Abstract

AbstractPlant functional traits offer ecologists quantifiable characteristics that may be used to determine the underlying mechanisms and drivers of processes at scales ranging from individual plants to entire ecosystems. While research on belowground functional traits has increased in recent years, most of this work has not fully considered the traits of mycorrhizal fungi, key symbionts responsible for much nutrient uptake and soil exploration in trees. We argue that, because of the important role of mycorrhizae in resource uptake, the measurement of belowground plant traits without the inclusion of mycorrhizal fungal traits potentially misses key mechanistic factors affecting plant performance, which has implications across ecological scales. In doing so, we provide a synopsis of current and past work on plant root traits and mycorrhizal fungal traits. Finally, we suggest potential key fungal traits to be measured and possible methods for measurement as ways to address the current gaps in our knowledge.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3