Comparative productivity of six bioenergy cropping systems on marginal lands in the Great Lakes Region, United States

Author:

Jayawardena Dileepa M.12ORCID,Robertson G. Philip123,Sanford Gregg R.45,Thelen Kurt D.12

Affiliation:

1. Department of Energy‐Great Lakes Bioenergy Research Center Michigan State University East Lansing Michigan USA

2. Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing Michigan USA

3. W.K. Kellogg Biological Station Michigan State University Hickory Corners Michigan USA

4. Department of Energy‐Great Lakes Bioenergy Research Center University of Wisconsin–Madison Madison Wisconsin USA

5. Department of Agronomy University of Wisconsin–Madison Madison Wisconsin USA

Abstract

AbstractGrowing lignocellulosic crops on marginal lands is a promising solution for sustainable biofuel production. We evaluated the productivity of bioenergy cropping systems (switchgrass [Panicum virgatum L., var. Cave‐In‐Rock], miscanthus [Miscanthus × giganteus, ‘Illinois clone’], hybrid poplar [Populus nigra × P. maximowiczii A. Henry ‘NM6’], native grasses [five species], early successional vegetation, and restored prairie vs. historical vegetation [as reference control]) with and without nitrogen fertilization on low‐fertility former cropland at five sites in the Great Lakes Region, United States. We reported biomass yields for the first 7 years after establishment. Switchgrass was most consistently productive across all sites but miscanthus was more productive at three of the five sites. When averaged across sites, years, and nitrogen (N) treatments, biomass yields followed the order miscanthus > switchgrass > hybrid poplar ≈ native grasses > restored prairie > early successional vegetation ≈ historical vegetation, but varied substantially by crop and site, with a significant crop by site interaction. Yields of miscanthus and switchgrass peaked after four–five growing seasons and declined thereafter, while yields of both native grasses and restored prairie increased throughout 6 years with no sign of follow‐on decline, suggesting that polycultures may outperform monocultures over the long term. Yields of early successional vegetation—similar in composition to historical vegetation at each site—did not improve with time. Nitrogen fertilization increased the yields of all cropping systems at all sites. Our results demonstrate the viability of low‐productivity former cropland for long‐term bioenergy production and suggest there is no single crop best suited for all low fertility soils.

Funder

Great Lakes Bioenergy Research Center

Publisher

Wiley

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3