First‐Principles Study on Electronic and Thermal Transport Properties of FeRuTiX Quaternary Heusler Compounds (X=Si, Ge, Sn)

Author:

Singh Saurabh123ORCID,Singh Shubham4ORCID,Srinivasan Bhuvanesh567ORCID,Kumar Ashish8ORCID,Bijewar Nitinkumar9,Mori Takao5ORCID,Takeuchi Tsunehiro123ORCID,Halet Jean‐François6ORCID

Affiliation:

1. Research Center for Smart Energy Technology Toyota Technological Institute 468-8511 Nagoya Japan

2. CREST Japan Science and Technology Agency 102-0076 Tokyo Japan

3. MIRAI Japan Science and Technology Agency 102-0076 Tokyo Japan

4. Physical Science and Engineering Division (PSE) King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Kingdom of Saudi Arabia

5. WPI International Center for Materials Nanoarchitectronics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki 305-0044 Tsukuba Japan

6. CNRS-Saint-Gobain-NIMS, IRL 3629 Laboratory for Innovative Key Materials and Structures (LINK) National Institute for Materials Science (NIMS) 1-1 Namiki 305-0044 Tsukuba Japan

7. Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras (IIT-Madras) 600 036 Chennai India

8. Department of Physics (SoE) University of Petroleum and Energy Studies (UPES) Bidholi 248007 Dehradun India

9. Department of Physics University of Mumbai Kalina Campus, Santacruz E 400098 Mumbai India

Abstract

AbstractThe structural, electronic, thermal and lattice thermal transport properties of the three hypothetical quaternary Heusler alloys FeRuTiX (X=Si, Ge, Sn) were investigated with the aid of first‐principles calculations. All compounds were found to be semiconducting with a small indirect band gap. Flat bands near the conduction band edge and degenerate multi‐bands near the valance band edge suggest that these systems should exhibit both large Seebeck coefficients and good electrical conductivity. The analysis of the calculated vibrational spectra showed that the three compounds are thermodynamically stable. The computed lattice thermal conductivity indicates that among the three compounds that of FeRuTiSn is rather low at high temperature. Indeed, a low lattice thermal conductivity (∼3.5 Wm−1 K−1 at 1000 K) together with a small electronic band gap (0.51 eV) with an appropriate electronic structure (disperse and flat bands) render FeRuTiSn a promising candidate as a high‐temperature thermoelectric material.

Funder

JST-Mirai Program

Publisher

Wiley

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3