The Zintl Concept Applied to Intergrowth Structures: Electron‐Hole Matching, Stacking Preferences, and Chemical Pressures in Pd5InAs

Author:

Kraus Joseph D.1ORCID,Van Buskirk Jonathan S.1ORCID,Fredrickson Daniel C.1ORCID

Affiliation:

1. Department of Chemistry University of Wisconsin-Madison 1101 University Avenue Madison Wisconsin 53706 United States

Abstract

AbstractEnumerating the potential stacking sequences of layers is a fundamental way to account for the structure diversity of solid state compounds. In many cases, these stacking variations represent polymorphs with only small energetic differences. Here, we examine a compound for which the preferred stacking pattern instead reveals key aspects about its chemical bonding: Pd5InAs. Its structure is based on the intergrowth of slabs of the AuCu3 and PtHg2 (or alternatively, fluorite) structure types. Two basic stacking arrangements are available to this compound, represented by the Pd5TlAs and HoCoGa5 structure types. DFT total energy calculations reveal that the former outcompetes the latter by a staggering 0.65 eV/formula unit. Through a combination of DFT‐reversed approximation Molecular Orbital (DFT‐raMO) and DFT‐Chemical Pressure (DFT‐CP) analysis we trace this preference to two factors. First, with DFT‐raMO analysis, we derive a Zintl‐like bonding scheme of Pd5InAs. This scheme, along with the inspection of selected crystal orbitals, is then connected to preferred stacking through the coordination environments of the Pd atoms at the interface between the Pd−In and Pd−As layers. In the hypothetical HoCoGa5‐type and observed Pd5InAs‐type structures, different Pd coordination environments arise at the interfaces. The hypothetical structure features square planar PdIn2As2 units, in each of which the same 4d‐orbital serves in the Pd sublattice's role as both Lewis acid (for interactions with the As) and Lewis base (for interactions with the In). In the observed structure, tetrahedral PdIn2As2 units occur instead, so that these contradictory roles are distributed to separate 4d‐orbitals, leading to more effective bonding. DFT‐CP analysis illustrates that this driving force for the Pd5TlAs‐type arrangement is supplemented by a favorable alignment of the packing tensions in the parent structures. Altogether, the resulting picture demonstrates how the reaction of simple intermetallic structures to form intergrowths can be guided by recognizable chemical interactions.

Funder

Basic Energy Sciences

National Science Foundation

Publisher

Wiley

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3