Univariate exploratory data analysis of satellite telemetry

Author:

Praveen Mv Ramachandra1,Choudhury Sushabhan2,Kuchhal Piyush2,Singh Rajesh34,Pandey Purnendu Shekhar5,Galletta Antonino6ORCID

Affiliation:

1. University of Petroleum and Energy Studies (UPES) Dehradun India

2. Electrical Engineering Department University of Petroleum and Energy Studies (UPE) Dehradun India

3. Uttaranchal Institute of Technology Uttaranchal University Dehradun India

4. Department of Project Management Universidad Internacional Iberoamericana Campeche CP Mexico

5. Department of Electronics and Communication Engineering GL Bajaj Institute of Technology and Management, Affiliated to AKTU Greater Noida India

6. University of Messina Messina Italy

Abstract

SummaryLarge low Earth orbit satellite constellations require machine learning methods for enabling autonomy in health keeping of the satellites. Autonomy in health keeping entail's fault detection, isolation and reconfiguration. However, prior to model building, it becomes imperative to conduct exploratory data analysis of the data to gain an intuition of data and to decide the best model. Univariate exploratory data analysis has been carried out on a BUS CURRENT sensor of electrical power system of a low Earth orbit satellite to gain an understanding of data. Various aspects of data like presence of outliers, sampling frequency, missing values, comparison of imputation methods to fill missing values seasonality and trend analysis, stationarity test on data, rolling mean and autocorrelation and partial auto correlation plots have been made, and a detailed statistical analysis of results has been conducted.

Funder

Università degli Studi di Messina

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Media Technology

Reference24 articles.

1. DaehnickC KlinghofferI MaritzB WisemanB.Large LEO satellite constellations: will it be different this time. McKinsey and Company. Seattle USA;2020. Available:https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/large-leo-satellite-constellations-will-it-be-different-this-time

2. SarmaS AgrawalVK ParameshawarnK UdupaS.ASIC design of an on‐board storage (OBS) subsystem for satellite health‐keeping data management and telemetry. InMATEIT‐2008 New Delhi India;2008.

3. MorganPS.Fault protection techniques in JPL spacecraft. Jet Propulsion Lab NASA Pasadena California USA;2005. Available at:https://trs.jpl.nasa.gov/bitstream/handle/2014/39531/05-2750.pdf?sequence=1

4. Telemetry Fault-Detection Algorithms: Applications for Spacecraft Monitoring and Space Environment Sensing

5. WanderA FörstnerR.Innovative fault detection isolation and recovery on‐board spacecraft: Study and implementation using cognitive automation. In2013 SysTol Nice France;2013 pp.336–341. doi:10.1109/SysTol.2013.6693950.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel statistical method for data drift detection in satellite telemetry;International Journal of Communication Systems;2024-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3