Lifestyle risks associated with brain functional connectivity and structure

Author:

Rolls Edmund T.123ORCID,Feng Ruiqing1,Feng Jianfeng124

Affiliation:

1. Department of Computer Science University of Warwick Coventry UK

2. Institute of Science and Technology for Brain‐inspired Intelligence Fudan University Shanghai China

3. Oxford Centre for Computational Neuroscience Oxford UK

4. Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence Fudan University, Ministry of Education Shanghai China

Abstract

AbstractSome lifestyle factors are related to health and brain function and structure, but the brain systems involved are incompletely understood. A general linear model was used to test the associations of the combined and separate lifestyle risk measures of alcohol use, smoking, diet, amounts of physical activity, leisure activity, and mobile phone use, with brain functional connectivity with the high resolution Human Connectome Project (HCP) atlas in 19,415 participants aged 45–78 from the UK Biobank, with replication with HCP data. Higher combined lifestyle risk scores were associated with lower functional connectivity across the whole brain, but especially of three brain systems. Low physical, and leisure and social, activity were associated with low connectivities of the somatosensory/motor cortical regions and of hippocampal memory‐related regions. Low mobile phone use, perhaps indicative of poor social communication channels, was associated with low functional connectivity of brain regions in and related to the superior temporal sulcus that are involved in social behavior and face processing. Smoking was associated with lower functional connectivity of especially frontal regions involved in attention. Lower cortical thickness in some of these regions, and also lower subcortical volume of the hippocampus, amygdala, and globus pallidus, were also associated with the sum of the poor lifestyle scores. This very large scale analysis emphasizes how the lifestyle of humans relates to their brain structure and function, and provides a foundation for understanding the causalities that relate to the differences found here in the brains of different individuals.

Funder

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3