Dual‐mode event‐triggered predictive control for nonlinear systems with bounded disturbances

Author:

Du Shengli12ORCID,Zhao Mingming12,Wang Xue‐Fang3,Han Honggui12,Qiao Junfei12ORCID

Affiliation:

1. School of Artificial Intelligence and Automation Beijing University of Technology Beijing China

2. Beijing Laboratory of Smart Environmental Protection Beijing China

3. School of Engineering University of Leicester, University Road Leicester UK

Abstract

AbstractIn this article, we propose a dual‐mode event‐triggered predictive control method for nonlinear systems with bounded disturbances. The proposed method contains two triggering mechanisms, namely, the hybrid threshold‐based event‐triggered model predictive control (HETMPC) mechanism and the event‐triggered linear quadratic regulator mechanism. The former triggering mechanism is designed based on the error between the real state and the optimal state and also the disturbance information acted on the investigated system. Compared with the traditional fixed triggering threshold, the designed HETMPC has a fewer triggering numbers and reduces the computational burden of online real‐time optimization. This event‐triggered mechanism will be adopted before the states go into the terminal invariant set. The latter event‐triggered mechanism is designed based on the derivation of the system state and it will be adopted after the states enter the terminal invariant set. The feasibility and the input‐to‐state practical stability analysis of the designed strategy is presented. Some simulations, including the application to a mass‐spring‐damper system, are provided to show the correctness and feasibility of the designed algorithms.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integral-Type Event-Triggered Model Predictive Control for Manipulator Systems;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3