Reduced left ventricular dynamics modeling based on a cylindrical assumption

Author:

Genet Martin12ORCID,Diaz Jérôme12,Chapelle Dominique12,Moireau Philippe12

Affiliation:

1. LMS, École Polytechnique/CNRS/Institut Polytechnique de Paris Palaiseau France

2. Inria, MΞDISIM Team, Inria Saclay‐Ile de France Palaiseau France

Abstract

AbstractBiomechanical modeling and simulation is expected to play a significant role in the development of the next generation tools in many fields of medicine. However, full‐order finite element models of complex organs such as the heart can be computationally very expensive, thus limiting their practical usability. Therefore, reduced models are much valuable to be used, for example, for pre‐calibration of full‐order models, fast predictions, real‐time applications, and so forth. In this work, focused on the left ventricle, we develop a reduced model by defining reduced geometry & kinematics while keeping general motion and behavior laws, allowing to derive a reduced model where all variables & parameters have a strong physical meaning. More specifically, we propose a reduced ventricular model based on cylindrical geometry & kinematics, which allows to describe the myofiber orientation through the ventricular wall and to represent contraction patterns such as ventricular twist, two important features of ventricular mechanics. Our model is based on the original cylindrical model of Guccione, McCulloch, & Waldman (1991); Guccione, Waldman, & McCulloch (1993), albeit with multiple differences: we propose a fully dynamical formulation, integrated into an open‐loop lumped circulation model, and based on a material behavior that incorporates a fine description of contraction mechanisms; moreover, the issue of the cylinder closure has been completely reformulated; our numerical approach is novel aswell, with consistent spatial (finite element) and time discretizations. Finally, we analyze the sensitivity of the model response to various numerical and physical parameters, and study its physiological response.

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3