Facile fabrication of polyurethane/poly(methyl methacrylate) semi‐interpenetrating polymer networks for enhanced mechanical and thermal properties

Author:

Tiwari Pragya1,Bhardwaj Shakshi1,Singh Shiva1,Maji Pradip K.1

Affiliation:

1. Department of Polymer and Process Engineering Indian Institute of Technology Roorkee, Saharanpur Campus Saharanpur India

Abstract

AbstractThe primary objective of this research is to fabricate semi‐interpenetrating polymer networks (semi‐IPNs) via in‐situ polymerization of methyl methacrylate (MMA) within a polyurethane (PU) framework. To produce polymethyl methacrylate (PMMA) from MMA in the PU matrix, solution polymerization was utilized in the following weight ratios: 30/70, 50/50, 70/30, and 90/10. The effective formation of semi‐IPNs of PU/PMMA was confirmed by several techniques. Fourier transform infrared (FTIR) proves that no new chemical bonds formed between the semi‐IPNs, and only physical interactions were present, and X‐ray diffraction (XRD) techniques tell about the amorphous nature of these semi‐IPNs. The field emission scanning electron microscope (FESEM) and atomic force microscope (AFM) were utilized to examine the morphology of PU/PMMA semi‐IPNs. In contrast to alternative semi‐IPNs, 70/30 and 90/10 PU/PMMA exhibit a uniform morphology devoid of phase separation. Furthermore, the significant thermal stability and transitions of these semi‐IPNs were assessed using a thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Additionally, the mechanical analysis indicates that among the different percentages of PU/PMMA, 70/30 PU/PMMA exhibits the highest tensile strength of approximately 50.5 MPa. The observed enhancement in mechanical strength can be attributed to interpenetrating networks (IPNs) formed between the constituents. The synthesized PU/PMMA semi‐IPNs have potential in various fields, including medical devices, automotive components, sports, and other advanced applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3