Affiliation:
1. Solid State Ionics Research Laboratory, School of Studies in Physics & Astrophysics Pt. Ravishankar Shukla University Raipur Chhattisgarh 492010 India
Abstract
AbstractTo study the effect of nanofiller particle TiO2 on sodium (Na+) – ion conducting solid polymer electrolyte (SPE) film: [80PEO:20NaPF6] and nanocomposite polymer electrolyte (NCPE): [80PEO:20NaPF6] + xTiO2, where x = 1–9 wt. (%) have been prepared. SPE film composition: [80PEO:20NaPF6] selects as Ist‐phase host and nano‐sized (<100 nm) filler materials TiO2 as IInd‐phase dispersoid. Both SPE and NCPE films have been prepared by the hot‐press technique. Filler particle‐dependent conductivity study reveals the NCPE system: [80PEO:20NaPF6] + 8TiO2 as the highest conducting composition with σrt − 3.53 × 10−6 S cm−1, which is approximately one order of magnitude higher than the SPE optimum conducting composition (OCC) (σrt) ≈ 7.78 × 10−7 S cm−1. Ion transport properties for both SPE and NCPE system have been evaluated in terms of ionic conductivity (σ) and total ionic (tion)/cationic (t+) transference numbers using combined AC/DC techniques in order to evaluate its usefulness in all‐solid‐state battery applications. Structural/thermal properties have been characterized using X‐ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. A cyclic voltammetry (CV) study has been performed in SPE and NCPE OCC film to evaluate the electrochemical performance for battery application.