Affiliation:
1. Department of Engineering University of Campania “Luigi Vanvitelli” via Roma 29 Aversa CE 81031 Italy
Abstract
AbstractThe use of additive manufacturing techniques in the development of aerospace components is gaining ground. These innovative methodologies facilitate the proposal of new designs for components with weight reduced features without compromising their mechanical properties. This results in lower fuel consumption and emissions. The present paper focuses on a metal replacement process in a UAV's vertical tail, using a Design for Additive Manufacturing (DfAM) strategy and making use of the lightweight, high‐strength engineering polymer known as carbon PA. By comparing the results achieved through numerical simulations conforming to certification standards between the metal and carbon PA vertical tail model, this work points out the possibility of decreasing the structural mass of the component by up to 48% while maintaining structural integrity. This reduction is achieved by matching materials, design concepts, and manufacturing capabilities.