Affiliation:
1. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province Chengdu University of Information Technology Chengdu China
2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics Institute of Atmospheric Physics, Chinese Academy of Sciences Beijing China
Abstract
AbstractSoil freeze–thaw alternation is a natural characteristic of the Tibetan Plateau (TP), and plays an important role in surface energy balance and eco‐hydrological processes. The soil freeze–thaw process on the TP has changed significantly owing to global warming, affecting the alpine ecosystem structure and function. This study used high‐resolution atmospheric forcing datasets to drive the Community Land Model version 5.0 (CLM5.0) to simulate the near‐surface soil freeze–thaw status between 1979 and 2020. The simulated results were compared with in situ observations, and then the spatiotemporal distribution of the freeze start‐date (FSD), freeze end‐date (FED), freeze duration (FD), and thaw duration (TD) at a depth of 0.1 m were analyzed. The Nash–Sutcliffe efficiency coefficients (NSEs) of FSD, FED, FD, and TD between simulations and in situ observations were 0.77, 0.90, 0.98 and 0.92, and the correlation coefficients of FSD, FED, FD, TD were 0.97, 0.99, 0.99 and 0.98, respectively. The spatial distribution of FSD and TD was characterized by gradually increasing from northwest to southeast while FED and FD exhibited the opposite characteristics. FSD, FED, FD, and TD changed at an area‐mean rate of 1.1, −1.4, −2.5, and 2.5 days decade−1, respectively. This study provides an important reference for analyzing and predicting the changes in near surface soil freeze–thaw status on the TP under the warming climate.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
EarthLab, University of Washington
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献