FOXO1 promotes the expression of canonical WNT target genes in examined basal‐like breast and glioblastoma multiforme cancer cells

Author:

Pintor Shania1,Lopez Alma1,Flores David1,Lozoya Brianda1,Soti Bipul1,Pokhrel Rishi1,Negrete Joaquin1,Persans Michael W.1,Gilkerson Robert12,Gunn Bonnie1,Keniry Megan1ORCID

Affiliation:

1. Department of Biology The University of Texas Rio Grande Valley Edinburg TX USA

2. Medical Laboratory Sciences The University of Texas Rio Grande Valley Edinburg TX USA

Abstract

Basal‐like breast cancer (BBC) and glioblastoma multiforme (GBM) are aggressive cancers associated with poor prognosis. BBC and GBM have stem cell‐like gene expression signatures, which are in part driven by forkhead box O (FOXO) transcription factors. To gain further insight into the impact of FOXO1 in BBC, we treated BT549 cells with AS1842856 and performed RNA sequencing. AS1842856 binds to unphosphorylated FOXO1 and inhibits its ability to directly bind to DNA. Gene Set Enrichment Analysis indicated that a set of WNT pathway target genes, including lymphoid enhancer‐binding factor 1 (LEF1) and transcription factor 7 (TCF7), were robustly induced after AS1842856 treatment. These same genes were also induced in GBM cell lines U87MG, LN18, LN229, A172, and DBTRG upon AS1842856 treatment. By contrast, follow‐up RNA interference (RNAi) targeting of FOXO1 led to reduced LEF1 and TCF7 gene expression in BT549 and U87MG cells. In agreement with RNAi experiments, CRISPR Cas9‐mediated FOXO1 disruption reduced the expression of canonical WNT genes LEF1 and TCF7 in U87MG cells. The loss of TCF7 gene expression in FOXO1 disruption mutants was restored by exogenous expression of the DNA‐binding‐deficient FOXO1‐H215R. Therefore, FOXO1 induces TCF7 in a DNA‐binding‐independent manner, similar to other published FOXO1‐activated genes such as TCF4 and hes family bHLH transcription factor 1. Our work demonstrates that FOXO1 promotes canonical WNT gene expression in examined BBC and GBM cells, similar to results found in Drosophila melanogaster, T‐cell development, and murine acute myeloid leukemia models.

Funder

National Institute of Food and Agriculture

National Institute of General Medical Sciences

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3