Structural enzymology studies with the substrate 3S‐hydroxybutanoyl‐CoA: bifunctional MFE1 is a less efficient dehydrogenase than monofunctional HAD

Author:

Sridhar Shruthi1ORCID,Kiema Tiila‐Riikka2ORCID,Schmitz Werner3ORCID,Widersten Mikael4ORCID,Wierenga Rik K.1ORCID

Affiliation:

1. Faculty of Biochemistry and Molecular Medicine University of Oulu Finland

2. Biocenter Oulu University of Oulu Finland

3. Theodor Boveri Institute of Biosciences (Biocenter) University of Würzburg Germany

4. Department of Chemistry – BMC Uppsala University Sweden

Abstract

Multifunctional enzyme, type‐1 (MFE1) catalyzes the second and third step of the β‐oxidation cycle, being, respectively, the 2E‐enoyl‐CoA hydratase (ECH) reaction (N‐terminal part, crotonase fold) and the NAD+‐dependent, 3S‐hydroxyacyl‐CoA dehydrogenase (HAD) reaction (C‐terminal part, HAD fold). Structural enzymological properties of rat MFE1 (RnMFE1) as well as of two of its variants, namely the E123A variant (a glutamate of the ECH active site is mutated into alanine) and the BCDE variant (without domain A of the ECH part), were studied, using as substrate 3S‐hydroxybutanoyl‐CoA. Protein crystallographic binding studies show the hydrogen bond interactions of 3S‐hydroxybutanoyl‐CoA as well as of its 3‐keto, oxidized form, acetoacetyl‐CoA, with the catalytic glutamates in the ECH active site. Pre‐steady state binding experiments with NAD+ and NADH show that the kon and koff rate constants of the HAD active site of monomeric RnMFE1 and the homologous human, dimeric 3S‐hydroxyacyl‐CoA dehydrogenase (HsHAD) for NAD+ and NADH are very similar, being the same as those observed for the E123A and BCDE variants. However, steady state and pre‐steady state kinetic data concerning the HAD‐catalyzed dehydrogenation reaction of the substrate 3S‐hydroxybutanoyl‐CoA show that, respectively, the kcat and kchem rate constants for conversion into acetoacetyl‐CoA by RnMFE1 (and its two variants) are about 10 fold lower as when catalyzed by HsHAD. The dynamical properties of dehydrogenases are known to be important for their catalytic efficiency, and it is discussed that the greater complexity of the RnMFE1 fold correlates with the observation that RnMFE1 is a slower dehydrogenase than HsHAD.

Funder

Academy of Finland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3