Human neural stem cells repress glioma cell progression in a paracrine manner by downregulating the Wnt/β‐catenin signalling pathway

Author:

Yin Xiaolin1ORCID,Liu Xiumei2,Xiao Xiangyi1,Yi Kaiyu1,Chen Weigong2,Han Chao1,Wang Liang1,Li Ying1,Liu Jing1

Affiliation:

1. Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University Dalian Medical University China

2. Dalian Innovation Institute of Stem Cell and Precision Medicine China

Abstract

Neural stem cells (NSCs) play crucial roles in neurological disorders and tissue injury repair through exerting paracrine effects. However, the effects of NSC‐derived factors on glioma progression remain unclear. This study aimed to evaluate the effects of human NSC‐conditioned medium (NSC‐CM) on the behaviour of glioma cells using an in vitro co‐culture system. Cell counting kit‐8 and 5‐ethynyl‐2′‐deoxyuridine assays revealed that NSC‐CM inhibited glioma cell proliferation and growth in a fetal bovine serum (FBS)‐independent manner. In addition, our wound‐healing assay demonstrated that NSC‐CM repressed glioma cell migration, while results from transwell and 3D spheroid invasion assays indicated that NSC‐CM also reduced the invasion capacity of glioma cells. Flow cytometry showed that NSC‐CM prevented cell cycle progression from the G1 to S phase and promoted apoptosis. Western blotting was used to show that the expression of Wnt/β‐catenin pathway‐related proteins, including β‐catenin, c‐Myc, cyclin D1, CD44 and Met, was remarkably decreased in NSC‐CM‐treated glioma cells. Furthermore, the addition of a Wnt/β‐catenin pathway activator, CHIR99021, significantly induced the expression of β‐catenin and Met and increased the proliferative and invasive capabilities of control medium‐treated glioma cells but not those of NSC‐CM‐treated glioma cells. The use of enzyme‐linked immunosorbent assays (ELISA) revealed the secretion of some antitumour factors in human and rat NSCs, including interferon‐α and dickkopf‐1. Our data suggest that NSC‐CM partially inhibits glioma cell progression by downregulating Wnt/β‐catenin signalling. This study may serve as a basis for developing future antiglioma therapies based on NSC derivatives.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3