MFN2 deficiency affects calcium homeostasis in lung adenocarcinoma cells via downregulation of UCP4

Author:

Zhang Jingjing12ORCID,Pan Lifang1ORCID,Zhang Qiang3,Zhao Yanyan12,Wang Wenwen12ORCID,Lin Nengming12,Zhang Shirong12,Wu Qiong4ORCID

Affiliation:

1. Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital Zhejiang Chinese Medical University Hangzhou China

2. Department of Oncology, Affiliated Hangzhou First People's Hospital, Cancer Center Zhejiang University School of Medicine Hangzhou China

3. Department of Pharmaceutical and Chemical Engineering Zhengzhou Business Technicians Institute China

4. Department of Integrated Chinese and Western Medicine The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou China

Abstract

Mitofusin‐2 (MFN2) is a transmembrane GTPase that regulates mitochondrial fusion and thereby modulates mitochondrial function. However, the role of MFN2 in lung adenocarcinoma remains controversial. Here, we investigated the effect of MFN2 regulation on mitochondria in lung adenocarcinoma. We found that MFN2 deficiency resulted in decreased UCP4 expression and mitochondrial dysfunction in A549 and H1975 cells. UCP4 overexpression restored ATP and intracellular calcium concentration, but not mtDNA copy number, mitochondrial membrane potential or reactive oxygen species level. Furthermore, mass spectrometry analysis identified 460 overlapping proteins after independent overexpression of MFN2 and UCP4; these proteins were significantly enriched in the cytoskeleton, energy production, and calponin homology (CH) domains. Moreover, the calcium signaling pathway was confirmed to be enriched in KEGG pathway analysis. We also found by protein–protein interaction network analysis that PINK1 may be a key regulator of MFN2‐ and UCP4‐mediated calcium homeostasis. Furthermore, PINK1 increased MFN2/UCP4‐mediated intracellular Ca2+ concentration in A549 and H1975 cells. Finally, we demonstrated that low expression levels of MFN2 and UCP4 in lung adenocarcinoma are associated with poor clinical prognosis. In conclusion, our data suggest not only a potential role of MFN2 and UCP4 in co‐regulating calcium homeostasis in lung adenocarcinoma but also their potential use as therapeutic targets in lung cancer.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3