The separation between mRNA‐ends is more variable than expected

Author:

Gerling Nancy1ORCID,Mendez J. Alfredo2ORCID,Gomez Eduardo3,Ruiz‐Garcia Jaime1ORCID

Affiliation:

1. Institute of Physics Biological Physics Laboratory San Luis Potosi Mexico

2. Institute of Physics Laboratory of Molecular Biophysics San Luis Potosi Mexico

3. Cold Atoms Laboratory, Institute of Physics Universidad Autónoma de San Luis Potosí San Luis Potosí Mexico

Abstract

Effective circularization of mRNA molecules is a key step for the efficient initiation of translation. Research has shown that the intrinsic separation of the ends of mRNA molecules is rather small, suggesting that intramolecular arrangements could provide this effective circularization. Considering that the innate proximity of RNA ends might have important unknown biological implications, we aimed to determine whether the close proximity of the ends of mRNA molecules is a conserved feature across organisms and gain further insights into the functional effects of the proximity of RNA ends. To do so, we studied the secondary structure of 274 full native mRNA molecules from 17 different organisms to calculate the contour length (CL) of the external loop as an index of their end‐to‐end separation. Our computational predictions show bigger variations (from 0.59 to 31.8 nm) than previously reported and also than those observed in random sequences. Our results suggest that separations larger than 18.5 nm are not favored, whereas short separations could be related to phenotypical stability. Overall, our work implies the existence of a biological mechanism responsible for the increase in the observed variability, suggesting that the CL features of the exterior loop could be relevant for the initiation of translation and that a short CL could contribute to the stability of phenotypes.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Wiley

Reference61 articles.

1. How RNA folds;Tinoco I;J Mol Biol,1999

2. Stitching together RNA tertiary architectures;Hermann T;J Mol Biol,1999

3. How does RNA fold dynamically?;Bushhouse DZ;J Mol Biol,2022

4. Functional cyclization of eukaryotic mRNAs;Alekhina OM;Int J Mol Sci,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3