Lipid dysmetabolism in ceruloplasmin‐deficient mice revealed both in vivo and ex vivo by MRI, MRS and NMR analyses

Author:

Mannella Valeria1,Chaabane Linda2ORCID,Canu Tamara2,Zanardi Alan3,Raia Sara3,Conti Antonio3,Ferrini Barbara3,Caricasole Andrea4,Musco Giovanna5ORCID,Alessio Massimo3ORCID

Affiliation:

1. COSR‐Centre for Omics Sciences IRCCS‐San Raffaele Hospital Milano Italy

2. Preclinical Imaging, Experimental Imaging Centre IRCCS‐San Raffaele Hospital Milano Italy

3. Proteome Biochemistry, COSR‐Centre for Omics Sciences IRCCS‐San Raffaele Hospital Milano Italy

4. Department of Research & Innovation, Kedrion S.p.A. Loc Bolognana Gallicano Italy

5. Biomolecular Nuclear Magnetic Resonance, Division of Genetics and Cell Biology IRCCS‐San Raffaele Hospital Milano Italy

Abstract

Ceruloplasmin (Cp) is a ferroxidase that plays a role in cellular iron homeostasis and is mainly expressed in the liver and secreted into the blood. Cp is also produced by adipose tissue, which releases it as an adipokine. Although a dysfunctional interaction of iron with the metabolism of lipids has been associated with several metabolic diseases, the role of Cp in adipose tissue metabolism and in the interplay between hepatocytes and adipocytes has been poorly investigated. We previously found that Cp‐deficient (CpKO) mice become overweight and demonstrate adipose tissue accumulation together with liver steatosis during aging, suggestive of lipid dysmetabolism. In the present study, we investigated the lipid alterations which occur during aging in adipose tissue and liver of CpKO and wild‐type mice both in vivo and ex vivo. During aging of CpKO mice, we observed adipose tissue accumulation and liver lipid deposition, both of which are associated with macrophage infiltration. Liver lipid deposition was characterized by accumulation of triglycerides, fatty acids and ω‐3 fatty acids, as well as by a switch from unsaturated to saturated fatty acids, which is characteristic of lipid storage. Liver steatosis was preceded by iron deposition and macrophage infiltration, and this was observed to be already occurring in younger CpKO mice. The accumulation of ω‐3 fatty acids, which can only be acquired through diet, was associated with body weight increase in CpKO mice despite food intake being equal to that of wild‐type mice, thus underlining the alterations in lipid metabolism/catabolism in Cp‐deficient animals.

Funder

Ministero della Salute

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3