The protein tyrosine phosphatase PPH‐7 is required for fertility and embryonic development in C. elegans at elevated temperatures

Author:

Franziscus Curdin A.1ORCID,Ritz Danilo1,Kappel N. Constantin2,Solinger Jachen A.1ORCID,Schmidt Alexander1ORCID,Spang Anne1ORCID

Affiliation:

1. Biozentrum University of Basel Switzerland

2. Leica Microsystems CMS GmbH Wetzlar Germany

Abstract

Post‐translational modifications are key in the regulation of activity, structure, localization, and stability of most proteins in eukaryotes. Phosphorylation is potentially the most studied post‐translational modification, also due to its reversibility and thereby the regulatory role this modification often plays. While most research attention was focused on kinases in the past, phosphatases remain understudied, most probably because the addition and presence of the modification is more easily studied than its removal and absence. Here, we report the identification of an uncharacterized protein tyrosine phosphatase PPH‐7 in C. elegans, a member of the evolutionary conserved PTPN family of phosphatases. Lack of PPH‐7 function led to reduction of fertility and embryonic lethality at elevated temperatures. Proteomics revealed changes in the regulation of targets of the von Hippel–Lindau (VHL) E3 ligase, suggesting a potential role for PPH‐7 in the regulation of VHL.

Funder

Universität Basel

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3