Kinetic modelling of the cellular metabolic responses underpinning in vitro glycolysis assays

Author:

Patil Nitin12ORCID,Mirveis Zohreh12,Byrne Hugh J.1

Affiliation:

1. FOCAS Research Institute TU Dublin Ireland

2. School of Physics, Optometric and Clinical Sciences TU Dublin Ireland

Abstract

This study aims to demonstrate the benefits of augmenting commercially available, real‐time, in vitro glycolysis assays with phenomenological rate equation‐based kinetic models, describing the contributions of the underpinning metabolic pathways. To this end, a commercially available glycolysis assay, sensitive to changes in extracellular acidification (extracellular pH), was used to derive the glycolysis pathway kinetics. The pathway was numerically modelled using a series of ordinary differential rate equations, to simulate the obtained experimental results. The sensitivity of the model to the key equation parameters was also explored. The cellular glycolysis pathway kinetics were determined for three different cell‐lines, under nonmodulated and modulated conditions. Over the timescale studied, the assay demonstrated a two‐phase metabolic response, representing the differential kinetics of glycolysis pathway rate as a function of time, and this behaviour was faithfully reproduced by the model simulations. The model enabled quantitative comparison of the pathway kinetics of three cell lines, and also the modulating effect of two known drugs. Moreover, the modelling tool allows the subtle differences between different cell lines to be better elucidated and also allows augmentation of the assay sensitivity. A simplistic numerical model can faithfully reproduce the differential pathway kinetics for three different cell lines, with and without pathway‐modulating drugs, and furthermore provides insights into the cellular metabolism by elucidating the underlying mechanisms leading to the pathway end‐product. This study demonstrates that augmenting a relatively simple, real‐time, in vitro assay with a model of the underpinning metabolic pathway provides considerable insights into the observed differences in cellular systems.

Funder

Science Foundation Ireland

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3