Bag‐1‐mediated HSF1 phosphorylation regulates expression of heat shock proteins in breast cancer cells

Author:

Kizilboga Tugba12ORCID,Özden Can1ORCID,Can Nisan Denizce1ORCID,Onay Ucar Evren3ORCID,Dinler Doganay Gizem1ORCID

Affiliation:

1. Department of Molecular Biology and Genetics Istanbul Technical University Turkey

2. Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences Istanbul University Turkey

3. Department of Molecular Biology and Genetics, Faculty of Sciences Istanbul University Turkey

Abstract

According to the World Health Organization in 2022, 2.3 million women were diagnosed with breast cancer. Investigating the interaction networks between Bcl‐2‐associated athanogene (Bag)‐1 and other chaperone proteins may further the current understanding of the regulation of protein homeostasis in breast cancer cells and contribute to the development of treatment options. The present study aimed to determine the interactions between Bag‐1 and heat shock proteins (HSPs); namely, HSP90, HSP70 and HSP27, to elucidate their role in promoting heat shock factor‐1 (HSF1)‐dependent survival of breast cancer cells. HER2‐negative (MCF‐7) and HER2‐positive (BT‐474) cell lines were used to examine the impact of Bag‐1 expression on HSF1 and HSPs. We demonstrated that Bag‐1 overexpression promoted HER2 expression in breast cancer cells, thereby resulting in the concurrent constitutive activation of the HSF1–HSP axis. The activation of HSP results in the stabilization of several tumor‐promoting HSP clients such as AKT, mTOR and HSF1 itself, which substantially accelerates tumor development. Our results suggest that Bag‐1 can modulate the chaperone activity of HSPs, such as HSP27, by directly or indirectly regulating the phosphorylation of HSF1. This modulation of chaperone activity can influence the activation of genes involved in cellular homeostasis, thereby protecting cells against stress.

Funder

Bilimsel Araştirma Projeleri Birimi, Istanbul Üniversitesi

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3