Application of artificial neural networks and Langmuir and Freundlich isotherm models to the removal of textile dye using biosorbents: A comparative study among methodologies

Author:

Petroli Gustavo1,Brocardo de Leon Vitória2,Di Domenico Michele1,Batista de Souza Fernanda2,Zanini Brusamarello Claiton1ORCID

Affiliation:

1. Departamento Acadêmico de Engenharias (DAENG) Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão Francisco Beltrão Brazil

2. Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão, Programa de Pós‐Graduação em Engenharia Ambiental: Análise e Tecnologia Ambiental (PPGEA) Francisco Beltrão Brazil

Abstract

AbstractAdsorption isotherms are valuable tools for describing the interaction between adsorbate and adsorbent since they demonstrate the equilibrium relationship. The Langmuir and Freundlich models are the most commonly used isotherm models to describe these relationships; still, they cannot consistently deliver efficient results due to the assumptions of the model not predicting more complex situations as occurs in biosorption. Artificial neural networks (ANN) are a set of algorithms modelled loosely after the human brain and are designed to recognize patterns. The ANN tool can overcome problems isotherm models have in describing the interactions mentioned and help define the best conditions for a given adsorption process. This paper reports the application of ANNs for predicting the removal efficiency of textile dye Neolan Black WA (Acid Black 52) using orange peel and sugarcane bagasse as biosorbents. The Freundlich, Langmuir, pseudo‐first‐order, and pseudo‐second‐order models were applied and compared to the ANN model. The parameters evaluated were initial dye concentration (10–600 mg/L), final dye concentration (0–83.44 mg/L), biosorbent mass (1.5 g), pH (2), and contact time of dye (0.167–24 h). Two classes of ANNs, Elman and feed‐forward networks, were tested with a mean square error of 0.0212 and 0.7274 for the isotherm and kinetics, respectively. Compared to the conventional isotherm and kinetic models, the Elman network predicted the amount adsorbed by the biosorbents with higher precision, acquiring a determination coefficient of 0.9998 and a mean square error of 8.75 × 10−5.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3