Preparation and stability of zinc‐based mesoporous sorbent modified with aluminium for high temperature coal gas desulphurization

Author:

Li Yang12,Du Yi‐en1,Wu Haipeng1,Mi Jie2,Feng Yu2

Affiliation:

1. Department of Chemistry and Chemical Engineering Jinzhong University Jinzhong China

2. State Key Laboratory of Clean and Efficient Coal Utilization Taiyuan University of Technology Taiyuan China

Abstract

AbstractZinc‐based sorbents with ordered mesoporous structure were modified with aluminium and the key factors in the preparation were optimized based on the results of desulphurization tests performed in a fixed‐bed reactor with simulated coal gas. It was shown that the sorbents for hydrogen sulphide removal reached an optimum sulphur capacity of 9.14% when prepared under conditions of 10.0 crystalline pH, 30:1 Si:Al molar ratio, 0.32:1 Zn:Si molar ratio, and 1:3 Zn:TAA molar ratio. The sorbent without aluminium was synthesized synchronously as a comparison sample to investigate the effect of aluminium addition on the desulphurization properties. The surface acidity of the sorbents is enhanced by the addition of aluminium, and the sulphur capacity of the aluminium‐doped sorbent is consequently lower compared to that of aluminium‐free sorbent. Nevertheless, the aluminium‐doped sorbent shows a significant advantage in stability of performance over multiple desulphurization–regeneration cycles and reaches an 81% retention rate of sulphur capacity after five desulphurization, while the aluminium‐free sorbent is only 51% in contrast. The characterization results manifest that aluminium enters the carrier skeleton and increases the wall thickness, which alleviates the collapse of the carrier pore channels and the agglomeration of the active components during the desulphurization process. Stable pore structures and highly dispersed active components facilitate the mass transfer in the reaction process after multiple desulphurization. As a result, the aluminium‐doped sorbent exhibits better performance stability in high temperature coal gas desulphurization.

Funder

Natural Science Foundation for Young Scientists of Shanxi Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3