Pore size regulation of ZIFs for adsorptive separation of branched chain and aromatic amino acids

Author:

Jiang Wen1,Miao Shifeng1,Yang Yujie1,Long Yu2

Affiliation:

1. School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing China

2. School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu China

Abstract

AbstractThis research endeavour aims to investigate the adsorptive separation of the branched chain (BCAA) and aromatic amino acids (AAA). Based on the different molecular sizes of BCAA and AAA, zeolitic imidazolate frameworks (ZIFs) with different pore structures were prepared by regulating the size of imidazole ligands. The structure and pore shape were characterized by Fourier transform infrared spectroscopy (FT‐IR), x‐ray diffraction (XRD), scanning electron microscope (SEM), and BET surface area (BET). The results indicated the successful synthesis of ZIF‐[Co(mIm)2], ZIF‐[Co(eIm)2], and ZIF‐[Co(pIm)2] with pore size distribution of 7.821, 6.943, and 9.394 Å, and particle size of these ZIFs was approximately 4 μm. ZIF‐[Co(eIm)2] was chosen as the optimal ZIFs for the separation of BCAA and AAA. The adsorption experiment was evaluated in the respective single and binary systems. The corresponding data in a single system demonstrated that ZIF‐[Co(eIm)2] showed good adsorption performance for BCAA and poor for AAA. Furthermore, the adsorption behaviour under experimental conditions conformed well to the pseudo‐second‐order kinetic model and Langmuir isotherm. ZIF‐[Co(eIm)2] had great separation ability for BCAA/AAA in their binary system. Finally, regeneration studies further manifested that ZIF‐[Co(eIm)2] exhibited fine reusability performance with adsorption efficiencies still higher than 70% after five cycles. This study exhibits a novel path for the design of adsorbents for efficient separation of BCAA/AAA.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3