Performance evaluation of biodegradable polymer PHBV and PBAT blends with adjustable melt flow behaviour, heat deflection temperature, and morphological transition

Author:

Zytner Peter12,Pal Akhilesh Kumar12ORCID,Mohanty Amar K.12ORCID,Misra Manjusri12ORCID

Affiliation:

1. Bioproducts Discovery and Development Centre, Department of Plant Agriculture University of Guelph Guelph Ontario Canada

2. School of Engineering, Thornbrough Building University of Guelph Guelph Ontario Canada

Abstract

AbstractMelt blending is a reliable and well‐demonstrated strategy for improving the mechanical, thermal, rheological, and surface properties of biopolymers. Poly(hydroxy‐3‐butyrate‐co‐3‐hydroxyvalerate) (PHBV) and poly(butylene adipate‐co‐terephthalate) (PBAT) are the two popular choices for blending polymers due to their diverse properties and complementary soil biodegradable behaviour. Due to their immiscibility, however, blending with the help of processing additives is necessary to reap the most significant benefits from this process and to avoid immiscibility issues. This study utilized the additives (peroxides and epoxy‐based chain extender) to compatibilize the biodegradable polymers PHBV and PBAT in a 60:40 blending ratio. The tensile strength and Young's modulus of the PHBV/PBAT(60/40) blend were improved by 32% and 64%, respectively, after adding a combination of peroxide (0.02 phr) and chain extender (0.3 phr) due to the formation of a complex network structure with increased chain length. The positive effect of an additive addition was also reflected by a 30°C increment in heat deflection temperature of biodegradable blend due to its high modulus value as supported by mechanical properties. The combined action of a peroxide and chain extender demonstrated a significantly higher complex viscosity of the PHBV/PBAT(60/40) blend due to the formation of a crosslinked polymer network as analyzed by rheological analysis. Our research demonstrated the effect of additives and their combined impact on analytical properties of PHBV/PBAT(60/40) blend to guide future work in improving their candidature to serve as a drop‐in solution in replacing non‐biodegradable petro‐based plastic products.

Funder

AAFC

Ontario Ministry of Economic Development, Job Creation and Trade

Ontario Ministry of Agriculture, Food and Rural Affairs

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3