Multi‐scale study of fluidized bed‐chemical vapour deposition process in nuclear fuel coated particle fabrication for high‐temperature gas‐cooled reactor: A review

Author:

Yan Zefan1,Jiang Lin1,Tian Yu1,Liu Rongzheng1,Shao Youlin1,Liu Bing1,Liu Malin1

Affiliation:

1. Institute of Nuclear and New Energy Technology Tsinghua University Beijing China

Abstract

AbstractFluidized bed‐chemical vapour deposition (FB‐CVD) is a kind of key technology used widely in many application fields, such as semiconductors, nuclear energy, energy storage, and catalysts. In recent years, it has drawn much attention in the preparation of nuclear fuel coated particles (CP). It also has long played a crucial role in the preparation of high‐temperature gas‐cooled reactor (HTGR) fuel pebbles. The multi‐scale study of FB‐CVD technology has paid attention to the industrial fabrication of nuclear fuel particles at a large scale. In this paper, the recent FB‐CVD studies of different application fields are summarized first. Then, the recent works of our group in the field of FB‐CVD process in nuclear fuel particle fabrication are summarized. The FB‐CVD process in nuclear fuel particle fabrication and the multi‐scale study of the FB‐CVD process are overviewed in detail. Molecular dynamics (MD) simulation is used to study the CVD process of preparing the coating layer at the micro‐scale. Computational fluid dynamics–discrete element model (CFD‐DEM) simulation is used to study the high‐density particle fluidization, mixing particle fluidization, and particle coating process at the particle scale. Process simulation is used to study the entire FB‐CVD production line at the macro scale. Finally, the great application potential of the multi‐scale coupling study of the FB‐CVD process in the industrial fabrication of nuclear fuel particles is revealed. This paper is helpful to develop the academic research field of fluidized beds. It also has inspiration and reference significance for the expansion of other industrial applications of FB‐CVD.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3