Abnormal state prediction of flotation process based on dual attention mechanism and multivariate information fusion

Author:

Wang Shu1,Fu Yu1,Zhang Lin1,Li Xinghua2

Affiliation:

1. The College of Information Science and Engineering Northeastern University Shenyang China

2. Zijin Intelligent Control (Xiamen) Technology Co Xiamen China

Abstract

AbstractPredicting abnormal conditions in flotation processes is vital for safety, efficiency, and product quality. However, existing studies lack predictions of abnormal working conditions in flotation processes and neglect temporal information in data. To address this, this paper proposes a novel approach for predicting abnormal work conditions in flotation processes. It utilizes a dual attention mechanism and multivariate information fusion. Features are extracted from froth images using the Xception model, a pre‐trained convolutional neural network. These features are combined with flotation process monitoring variables, creating fused data. An encoder and decoder time feature seq2seq (EDTF‐seq2seq) model with time and feature attention modules enables end‐to‐end information fusion and work condition prediction. The attention modules assign weights to each feature point, capturing the time–feature relationship and improving prediction accuracy. Four sets of experiments using real flotation process data validate the effectiveness of the proposed method, achieving favourable prediction accuracy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3