Distributionally robust chance‐constrained optimization with Sinkhorn ambiguity set

Author:

Yang Shu‐Bo1ORCID,Li Zukui1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada

Abstract

AbstractA novel distributionally robust chance‐constrained optimization (DRCCP) method is proposed in this work based on the Sinkhorn ambiguity set. The Sinkhorn ambiguity set is constructed based on the Sinkhorn distance, which is a variant of the Wasserstein distance with the entropic regularization. The proposed method can hedge against more general families of uncertainty distributions than the Wasserstein ambiguity set‐based methods. The presented approach is formulated as a tractable conic model based on the Conditional value‐at‐risk (CVaR) approximation and the discretized kernel distribution relaxation. This model is compatible with more general constraints that are subject to uncertainty than the Wasserstein‐based methods. Accordingly, the presented Sinkhorn DRCCP is a more practical approach that overcomes the limitations of the traditional Wasserstein DRCCP approaches. A numerical example and a nonlinear chemical process optimization case are studied to demonstrate the efficacy of the Sinkhorn DRCCP and its advantages over the Wasserstein DRCCP.

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

Reference46 articles.

1. Chance-Constrained Programming

2. Chance-Constrained Optimization for Refinery Blend Planning under Uncertainty

3. Demand response scheduling under uncertainty: Chance‐constrained framework and application to an air separation unit

4. OnoM WilliamsBC.Iterative risk allocation: a new approach to robust model predictive control with a joint chance constraint. Paper presented at: 2008 47th IEEE Conference on Decision and Control.2008; Cancun Mexico:3427‐3432.

5. Chance constrained programming and its applications to energy management;Van Ackooij W;Stoch Optim See Optim Uncertain,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3