Surface Modification of p‐type ZnO Nanorods by Nitrogen Doped SiO2 Dots as an Efficient Solar Photocatalyst for Degradation of Ciprofloxacin in Water

Author:

Cilamkoti Vatsala1,Dutta Raj Kumar1ORCID

Affiliation:

1. Department of Chemistry Indian Institute of Technology Roorkee 247667 India

Abstract

AbstractA simple two step hydrothermal method is developed for synthesizing p‐type zinc oxide (ZnO) nanorods surface modified with nitrogen doped silicon dioxide dots (ZnO/N‐SiO2). The structure, morphology, and chemical compositions are confirmed by X‐ray diffraction, Raman spectroscopy, Fourier transformed infrared spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, and by Mott‐Schottky studies. The N‐SiO2 dots on the surface of p‐type ZnO nanorods are formed during hydrothermal treatment at 90 °C (i.e., at 363 K), named as [ZnO/N‐SiO2]363K. While N‐SiO2 dots are embedded in the ZnO nanorods of the batch synthesized at 453 K. The band gap of the batches of ZnO/N‐SiO2 are wider (3.24–3.30 eV) than the pristine ZnO (3.16 eV). The modification of ZnO nanorods by the N‐SiO2 dots is corroborated by changes in the flat band potential, revealed from Mott‐Schottky measurements. The EPR and photoluminescence studies confirm p‐type ZnO attributable to zinc vacancies (VZn). The batch [ZnO/N‐SiO2]363 exhibits maximum photocatalytic degradation of ciprofloxacin in water. The specific rate constant is k′ = 0.97 min−1 g−1, which is nearly three times higher than that exhibited by the irregularly spherical pristine ZnO nanoparticles (k′ = 0.36 min−1 g−1). The enhanced photocatalytic degradation is attributed to holes mediated hydroxyl radical generation. The degradation mechanism is proposed by carrier mobility studies, radical scavenging studies and by identifying the degradation products.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3