High Performance Flexible Supercapacitor Based on Single Precursor Derived NiFe2O4 Spinel with Tailored Cationic Distribution and Oxygen Vacancies in Acidic Medium

Author:

Ajay 1,Tanwar Vaishali1,Gujare Aditi Ashok1,Ingole Pravin Popinand1ORCID

Affiliation:

1. Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India

Abstract

AbstractSpinel metal oxides are extensively studied for supercapacitors (SCs) in alkaline electrolytes, where charge storage capacity is limited by surface site availability due to surface reconstruction forming metal hydroxides/oxyhydroxides. The use of an acidic medium, which can boost the charge storage capacity of spinel oxides offering an additional channel of intercalation‐deintercalation of protons, is underexplored. Moreover, the impact of chemical compositions and the cationic distributions is crucial on the electrocatalysis performance of spinel oxides, however, such a correlation is first time reported for charge storage properties of spinel ferrite NiFe2O4 nanoparticles (NFO NPs). Besides, a low‐cost and scalable synthesis of NFO NPs involving the thermal decomposition of Ni‐Fe glycolate, followed by controlled air‐calcination is reported. Thus crafted NFO NPs‐based device shows impressive specific capacitance (2112 F g−1 at 10 A g−1) in half‐cell configuration. A flexible all‐solid‐state asymmetric device (full‐cell) configuration depicts impressive energy density (20.7 Wh kg−1), power density (4000 W kg−1), gravimetric capacitance (140 F g−1 at 2 A g−1), and retention of its performance (≈75% after 10,000 charging/discharging cycles). The results depict a new insight toward the tuning of electronic and charge storage properties in NFO, which otherwise are predominately attributed to only the crystallite size and morphological effects.

Funder

Science and Engineering Research Board

Department of Science and Technology, Government of Kerala

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3