Optimization of Thermoelectric Property of n‐Type Mg3Sb2 Near Room Temperature via Mn&Se Co‐Doping

Author:

Wang Runyu1,Luo Siyun1,Mo Xiaobo2,Liu Hang1,Liu Tong1,Lei Xiaobo1,Zhang Qinyong1,Zhang Jianjun1,Huang Lihong1ORCID

Affiliation:

1. School of Materials Science and Engineering Key Laboratory of Fluid and Power Machinery of Ministry of Education Xihua University Chengdu 610039 China

2. Chengdu Hongke electronic technology Co. Ltd Chengdu 610100 China

Abstract

AbstractThe Bi2Te3 family has been considered a state‐of‐the‐art thermoelectric material for room‐temperature applications for over half a century. However, scarcity of the material Te has been a persistent issue. Recently, the discovery of n‐type Mg3(Bi, Sb)2‐based materials provides new hope for replacing traditional Bi2Te3, but their thermoelectric properties near room temperature still need improvement for application to practical devices. Herein, a competitive figure of merit of ≈0.8 at 300 K and a high power factor greater than 30 µW cm−1 K−2 at 300 K in n‐type Mg3.14Mn0.06Bi1.4Sb0.59Se0.01 is reported, benefiting from the rationally tuned carrier concentration of 2.29×1019 cm−3 at room temperature. Substituting the Mg site with Mn in Mg3.2Bi1.4Sb0.59Se0.01 changes the dominant carrier scattering mechanism from a mixed scattering of acoustic phonons and ionized impurities to acoustic phonon scattering. Mn doping in Mg3.2Bi1.4Sb0.59Se0.01 also enhances the mobility to 180 cm2 V−1 s−1, reduces the thermal conductivity, and significantly increases the quality factor β of the material. The high room temperature thermoelectric performance of n‐type Mn&Se co‐doped Mg3(Bi, Sb)2‐based materials makes them a highly competitive substitute for commercialized n‐type Bi2Te3.

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3