Affiliation:
1. Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 P. R. China
2. School of Physics, Chemistry and Earth Sciences Faculty of Sciences, Engineering and Technology University of Adelaide Adelaide South Australia 5005 Australia
Abstract
AbstractThe continuously increasing demands for energy storage devices for portable electronics and electric vehicles have aroused massive research interest in developing lithium–sulfur batteries (LSBs) with high energy density and long‐term stability. Carbon nanotubes (CNTs), possessing numerous superior properties, are integrated into various components of LSBs for performance improvement. Nevertheless, a systematic and insightful issue‐based study of their inherent roles in addressing the practical challenges of LSBs is lacking. There is a growing consensus that CNTs do not directly contribute to the specific capacity (i.e., being involved in the redox reactions with electron loss/gain), while their auxiliary roles, such as providing a conductive and mechanically reinforced framework for active materials, are of prime significance in regulating the electrochemical reaction, charge transport, and mass transfer in the system. In this paper, after briefly introducing the working principles of LSBs and the promising applicability of CNTs, current challenges in various components of LSBs are discussed with the corresponding CNT‐based solutions, followed by an evaluation of the potential for commercializing CNT‐involved LSBs. Finally, some future research directions are provided to improve the device performance further.
Subject
General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献