Research Progress on the Application of MOF and MOF‐Based Materials in Nitrogen Reduction

Author:

Zhu Ying1,Ji Houqiang1,Huang Tianyu1,Sun Yangyang1,Pang Huan1ORCID

Affiliation:

1. Country School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy) Yangzhou University Yangzhou Jiangsu 225009 P. R. China

Abstract

AbstractElectrocatalytic and photocatalytic nitrogen fixation have become new ways to achieve green nitrogen reduction because of their environmentally friendly and cost‐effective characteristics. At present, there has been an increasing curiosity about using metal‐organic frameworks (MOFs) for photocatalysis and electrocatalysis. However, electrocatalytic and photocatalytic ammonia production is still not practical for practical applications. Having a thorough understanding of nitrogen fixation is necessary for the advancement of practical applications and the development of highly efficient catalysts in the future. The catalytic nitrogen fixation activity of MOF itself is limited. By adjusting the exposure of active sites through low‐temperature calcination and solvent addition, the photogenerated carrier recombination is inhibited, and the adsorption and activation of N2 are enhanced, improving its performance in nitrogen fixation applications. This review examines the reported photocatalysts, electrocatalysts, and photoelectrocatalysts based on MOFs and their associated materials. The underlying mechanism for photocatalysis and electrocatalysis is elucidated. Additionally, an inclusive survey of MOFs and related materials as catalysts for nitrogen reduction reaction (NRR) is presented, with representative examples discussed. Finally, the research progress of MOF‐based catalytic nitrogen fixation materials is summarized and prospected.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3