The First Proof of Concept Demonstration of Nanowarming in Coral Tissues

Author:

Daly Jonathan12ORCID,Bouwmeester Jessica12,Perry Riley12,Page Chris12,Khosla Kanav3,Kangas Joseph3,Lager Claire12,Hardy Katherine12,Bischof John C.34,Hagedorn Mary12

Affiliation:

1. Smithsonian Conservation Biology Institute Front Royal VA 22630 USA

2. Hawaiʻi Institute of Marine Biology University of Hawaiʻi at Mānoa 46‐007 Lilipuna Rd Kaneohe HI 96744 USA

3. Department of Mechanical Engineering University of Minnesota 111 Church St SE Minneapolis MN 55455 USA

4. Department of Biomedical Engineering University of Minnesota 312 Church St SE Minneapolis MN 55455 USA

Abstract

AbstractCoral reefs are threatened by anthropogenic climate change, which causes ocean acidification and warming that can result in coral death and the loss of genetic diversity on reefs around the world. Global efforts to secure the genetics of threatened populations using cryopreservation and biobanking are underway but are limited to coral sperm and larvae, available only during brief annual spawning events. Methods to cryopreserve adult coral tissues to enable biobanking activities year‐round are urgently needed, but are challenging due to the presence of a calcium carbonate skeleton and algal symbionts within the tissues, and chill sensitivity. In this study, vitrification and laser nanowarming permitted successful recovery of adult coral tissues in a novel sample type, the single‐polyp microfragment. Fluorescence and confocal microscopy shows clearly defined green fluorescent protein auto‐fluorescence around the polyp mouth post‐warming, with an overall survival rate of 39.7 ± 7.4% at 24 h post‐warming and 23.3 ± 9.7% at 1 month, but relatively few algal symbionts are present in the tissues, indicating poor survival of these cells. These proof‐of‐concept results provide a basis for continued research and development of a field‐ready protocol for cryopreservation of adult coral tissues, which will be essential to prevent extinctions and support reef restoration.

Funder

Smithsonian Institution

Paul M. Angell Family Foundation

Zegar Family Foundation

National Science Foundation

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3