CoOOH: Synthesis and Application in Alkaline Electrochemical Oxygen Evolution Reaction

Author:

Ren Xiaoqian1,Dai Yulong1,Wen Xinxin1,Guo Bingrong1,Shi Chenqi2,Huang Xiaoxiao3,Guo Ying2,Li Siwei1ORCID

Affiliation:

1. Institute of Industrial Catalysis School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China

2. School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P. R. China

3. Department of Physics Beijing Normal University Beijing 100875 P. R. China

Abstract

AbstractOxygen evolution reaction (OER) is the bottleneck for electrochemical water splitting due to its sluggish 4‐electron kinetics and high formation energy of O═O bond. Multiple kinds of Co‐based compounds such as oxides, hydroxides, sulfides, phosphides and so on are demonstrated to possess excellent OER activity. However, these materials will partially or fully convert to CoOOH after OER, and therefore CoOOH receive extensive research interests as the true active species for Co‐based OER catalyst in the past decade. Herein, the OER mechanism and synthesis of CoOOH and the strategies are reviewed for enhancing the OER performance of this kind of catalyst. The synthetic methods for CoOOH, including wet‐chemical oxidation method, electrochemical oxidation method, molten‐salt‐assisted synthesis and hydrothermal method will be reviewed and compared. Moreover, the strategies will be summarized for design active CoOOH‐based OER catalysts such as element doping and construction of hybrid catalysts in detail. Finally, an outlook is provided about the remaining challenges and future opportunities in this area.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3