Modelling Radiative Coolers for the Built Environment in the Urban Context

Author:

Kousis Ioannis12ORCID,Martilli Alberto3,Pisello Anna Laura12ORCID

Affiliation:

1. EAPLAB (Environmental Applied Physics Laboratory) at CIRIAF ‐ Interuniversity Research Center on Pollution and Environment University of Perugia Via G. Duranti 67 Perugia 06125 Italy

2. Department of Engineering University of Perugia Via G. Duranti 97 Perugia 06125 Italy

3. Atmospheric Modelling Unit Environmental Department CIEMAT Madrid 28040 Spain

Abstract

AbstractRadiative Coolers (RCs) represent an emerging technology that has the potential to significantly reduce urban heat and improve indoor/outdoor thermal comfort in the built environment. Broadband and Selective Radiative Coolers (BRCs and SRCs, respectively) are the two main types of RCs that have been proposed for application in the built environment. Being both typically characterized by high solar reflectance, the former emits thermal radiation within the overall infrared spectrum, whilst the latter emits thermal radiation mainly within the Atmospheric Window (AW) waverange. A variety of both types of RCs have been developed and tested in both in‐lab and in‐field experimental campaigns. Yet, all experiments comprise small scale specimens that do not represent real‐life scale components of the built environment. In addition, no meso scale assessments have been performed with respect to the RCs' performance at a city scale. Here, for the first time, the thermo‐optical performance of both BRCs and SRCs is introduced and investigated in a multilayer Urban Canopy Model (UCM) coupled with extended Weather Research and Forecasting model (WRF) and we simulated 20 different scenarios representing the vast majority of urban layouts. The outcomes show that both types of RCs maintain lower surface temperature and air temperature at 2 m height inside the canyon, compared to conventional roofs. In addition, a city scale application of RCs has been found capable of decreasing ambient temperature up to 1.6°C as potentially experienced by pedestrians.

Funder

HORIZON EUROPE European Research Council

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3