Configuration and Operation Optimization for Industrial Steam Power System Sustainable Retrofit Considering Renewable Energy Integration

Author:

Li Zeqiu12ORCID,Yang Liujian1,Tian Ying3,Huang Xiuhui1

Affiliation:

1. School of Energy and Power Engineering University of Shanghai for Science and Technology Shanghai 200093 China

2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering Shanghai 200093 China

3. School of Optical‐Electrical and Computer Engineering University of Shanghai for Science and Technology Shanghai 200093 China

Abstract

AbstractRenewable energy integration and operational optimization are crucial in energy sustainability and decarbonization, especially for industrial steam power systems (SPS). This study establishes an SPS superstructure that integrates wind, solar, and biomass energy. A mixed‐integer nonlinear programming (MINLP) model is developed to determine an optimal retrofit strategy that minimizes the life cycle cost, which includes carbon emission cost and energy cost. To solve this high‐dimensional complex optimization problem, a multistage strategy fusion differential evolution algorithm with dynamic partitioning of the SVM feasible domain (SVM‐MS‐DE) is developed. The results from the optimal strategy demonstrate a 9.02% reduction in the system's total cost and a 9.64% decrease in carbon emission through the incorporation of wind and solar energy. Additionally, the sensitivity analysis on biomass ratio, carbon emission price, energy demand, and carbon emission limits reveal that the region can contribute significantly to renewable energy initiatives. Several recommended policies are provided to encourage enterprises to move towards sustainable development.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3