Reversing Internal Electric Field Direction at BiVO4/TiO2 Heterostructure Interface by a Thin W‐VO2 Layer: Turning Waste Charge Carriers into Wealth

Author:

Seck Astou1,Mirzaei Amir1ORCID,Shayegan Zahra1,Ngom Balla D2,Ma Dongling1,Chaker Mohamed1

Affiliation:

1. Institut National de la Recherche Scientifique (INRS) Centre Énergie Materiaux Télécommunications 1650, Boulevard Lionel‐Boulet Varennes Québec J3X 1P7 Canada

2. Laboratoire de Photonique Quantique d'Energie et de Nano‐Fabrication Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) Dakar‐Fann Dakar B.P. 5005 Sénégal

Abstract

AbstractIn heterojunction photocatalysts, the band edge alignment and internal electric field (IEF) direction significantly affect the charge carrier separation, thus the photoconversion efficiency. For example, because of an unfavorable band alignment and compared to BiVO4 alone, BiVO4/TiO2 results in ≈24% reduction in photocurrent density in this study. Herein, a tungsten‐doped VO2 (W‐VO2) thin film is inserted between BiVO4 and TiO2 to modify unfavorable spike‐like conduction band offset and IEF direction in ternary heterojunction. After reversing the IEF direction and engineering the band edges through W‐VO2 insertion, the photocurrent density is enhanced by ≈145% and ≈91% compared to BiVO4/TiO2 and BiVO4, respectively at 1.23 V versus RHE. Besides, under visible light irradiation, the kinetics rate constant for tetracycline removal by BiVO4/W‐VO2/TiO2 photocatalyst is 225% higher than that of BiVO4/TiO2, due to utilizing charge carriers before being recombined, without doping the BiVO4 and TiO2 structures. Lastly, LC‐HR‐MS/MS analysis followed by the Toxicity Estimation Software Tool (T.E.S.T.) reveals the high importance of the band alignment on the detoxification of the solution. The tunability of the VO2 work function with a low bandgap, yet distinctive valence and conduction bands (which distinguished it from metals) opens new avenues for designing high‐performance heterojunction‐based devices.

Funder

Natural Sciences and Engineering Research Council of Canada

Fonds de recherche du Québec – Nature et technologies

Canada Research Chairs

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3