Affiliation:
1. Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
2. School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
Abstract
AbstractA series of anode materials with the general formula of Li2ZnTi3O8 (LZTO) and Li2‐xZnTi3‐xNbxO8 (x = 0.2, 0.4, and 0.5) (LZTNO) are designed. Different amount of high valence Nb5+ dopants not only reduces the content of lithium in LZTO but also alters the intrinsic characteristics of the composites, leading to optimized electrochemical performances. XRD, SEM, TEM, and XPS results suggest that Nb dopants are introduced successfully, but large amount of Nb5+ dopants (x > 0.2) result in the formation of ZnNb2O6 and TiO2. Owing to the small particle size and the improved structural stability, LZTNO‐2 sample exhibits the best electrochemical performance, and it can deliver a charge/discharge capacity of 182.7/181.2 mAh g−1 at 1 A g−1 after 500 cycles, which is much higher than the value of LZTO (100.41/100.41 mAh g−1). The experiments suggest that the introduction of high valence dopants can effectively modulate the stoichiometry and lithium content of the anode materials, making the available vacant sites for subsequent intercalation of lithium obviously extended. Such a strategy is expected to be feasibly applied to other anode materials to enhance their specific capacity and electrochemical performances.
Funder
National Natural Science Foundation of China
Northeastern University at Qinhuangdao
Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education
Innovative Research Group Project of the National Natural Science Foundation of China
Subject
General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献