Sustainable Mechanochemical Processed Recycled Spent Graphite and Nano‐Silicon Composites as Anode for Advanced Li‐Ion Batteries

Author:

Jegan Lekshmi1,Baji Dona Susan1,Nair Shantikumar1,Santhanagopalan Dhamodaran1ORCID

Affiliation:

1. School of Nanosciences and Molecular Medicine Amrita Vishwa Vidyapeetham Kochi Kerala 682041 India

Abstract

AbstractAdvanced lithium‐ion batteries (LIBs) for electric vehicle applications are on demand recently. Graphite anode in LIBs provides with good cycle life but limited capacity. On the other hand, silicon that possesses high capacity but significant volume changes during cycling limits its practical use. Hence, nanocomposites of graphite and nano silicon (nSi) can provide a viable solution. This work emphasizes the potential of recycled spent graphite (SG) composited with nSi anode in order to fulfill the demand for high capacity anodes. SG to nSi ratio is systematically designed of the composite for LIB applications. The structural, morphological, and surface chemical analysis are conducted and further correlated with the electrochemical performances of the composite anodes. The nanocomposite with equal ratio of SG:nSi (1:1) exhibited high reversible capacity of 1886 mAh g−1 while the SG dominant ratio of SG:nSi (3:1) delivered a least capacity loss of less than 2.2 mAh g−1 cycle−1 for 200 cycles. Nanocomposites exhibited satisfactory electrochemical performance; especially improving cycling stability. The enhanced performance is attributed to the stable solid‐electrolyte interface layer formation which is further characterized by ex situ X‐ray Photoelectron Spectroscopy analysis with different state of charge and discharge conditions.

Funder

Amrita Vishwa Vidyapeetham University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3