5.7% Efficiency Si Photoanodes for Solar Water Splitting Catalyzed by Vertically Grown and Oxygen‐Vacancy‐Rich NiFe Hydroxides

Author:

Zhu Peng1,Chen Cong1,Shen Junxia1,Wei Zhihe2,Wang Yongjie3,Zhang Yazhou4,Dong Wen1,Peng Yang2,Fan Ronglei15,Shen Mingrong1ORCID

Affiliation:

1. School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215006 China

2. Soochow Institute of Energy and Material Innovations College of Energy Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies Soochow University Suzhou 215006 China

3. School of Science Harbin Institute of Technology Shenzhen Shenzhen 518000 China

4. School of Advanced Energy Sun Yat‐sen University Shenzhen 518107 China

5. Cybrid Technology Inc.  Suzhou 215217 China

Abstract

AbstractThe sluggish oxygen evolution reaction (OER) kinetics and adverse charge transfer and stability at the multi‐interfaces from Si to electrolyte severely impede the application of Si photoanodes. Herein, oxygen vacancy (OV)‐rich NiFe‐layered hydroxides (NiFe‐OH) nanosheet arrays are vertically orientated on Ni‐protected Si photoanodes by a facile solvothermal method followed by a hot Fe ion‐exchange treatment. By virtue of the formation of OVs on NiFe‐OH nanosheets and the vertical contact between the NiFe‐OH and Si substrate, the as‐prepared Si photoanode not only enables abundant active sites for OER but also boosts charge and mass transfer when compared to traditional electro‐deposit samples. Moreover, the vertical contact of NiFe‐OH on Ni/Si benefits to release the interfacial stress and thereby promotes the electrode stability. Consequently, the optimal Si photoanode shows an ultrahigh applied bias photon‐to‐current efficiency of 5.7% and a good stability of over 200 h, outdoing almost all of the recently reported Si photoanodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3