MOF‐Derived FeCoO/N‐Doped C Bifunctional Electrode for H2 Production Through Water and Glucose Electrolysis

Author:

Tayebi Meysam1ORCID,Masoumi Zohreh2ORCID,Lee Hyungwoo1,Hong Daehyeon1,Seo Bongkuk1ORCID,Lim Choong‐Sun1ORCID,Kyung Daeseung2ORCID,Kim Hyeon‐Gook1ORCID

Affiliation:

1. Center for Specialty Chemicals Division of Specialty and Bio‐Based Chemicals Technology Korea Research Institute of Chemical Technology (KRICT) Jonggaro 45 Ulsan 44412 Republic of Korea

2. Department of Civil and Environment Engineering University of Ulsan Daehakro 93, Namgu Ulsan 44610 Republic of Korea

Abstract

AbstractThe glucose oxidation reaction (GOR) is a potential alternative to water oxidation because of its relatively low thermodynamic potential and the high availability of glucose. Herein, a FeCoO/N‐doped C electrode derived from metal–organic framework (MOF) materials is applied, which is synthesized in several steps through the controlled deposition of Fe–Co oxide nanocatalysts onto Co –N‐doped C nanofibers on a Ni foam substrate and demonstrate exceptional electrocatalytic activity for both the GOR and overall water splitting. Here, a bifunctional electrocatalyst derived from MOF, FeCoO/N‐doped C is reported, for glucose oxidation reaction (GOR) and hydrogen evolution reaction (HER). The MOF‐derived FeCoO/N‐doped C (+/‐) as a bifunctional electrocatalyst exhibits a cell voltage of 1.4 V for the GOR&HER, to reach a current density of 10 mA cm−2, which is 280 mV lower than that for the oxygen evolution reaction (OER)&HER (1.68 V). This study reveals that GOR is an energy‐efficient and affordable source of H2 and value‐added chemicals.

Funder

Ministry of Education

Korea Research Institute of Chemical Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3