Highly Sensitive Hybrid Triboelectric Nanogenerator with Ferris‐Wheel‐Like Structure for Ocean Wave Energy Harvesting

Author:

Li Songying12,Chen Chunjin12,Guo Dongxin12,Liu Heng12,Ning Heng12,Liu Guanlin12,Wan Lingyu12ORCID

Affiliation:

1. Institute of Science and Technology for Carbon Peak & Neutrality Center on Nanoenergy Research State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures School of Physical Science & Technology Guangxi University Nanning 530004 China

2. Guangxi Novel Battery Materials Research Center of Engineering Technology Nanning 530004 China

Abstract

AbstractOcean wave energy represents a widely distributed and abundant clean, renewable energy source. However, its efficient harnessing remains a challenge. In this study, a triboelectric‐electromagnetic hybrid generator of a Ferris‐wheel‐like structure (FWS‐TEHG) with magnetic repulsion assistance is proposed to effectively enhance the collection of low‐frequency and low‐amplitude water wave energy. The Ferris‐wheel shell and the internal rotator are designed with a phase difference to heighten the swing amplitude, while the introduction of magnetic repulsion augments the motion frequency. The device has demonstrated excellent performance in low‐frequency conditions, from laboratory to ocean wave tests. Operating at a frequency of 0.5 Hz and a swing angle of 12° on a six‐freedom platform, it lights up 64 LEDs with a power rating of 2 W. Triggered by simulated water waves with a frequency of 1 Hz, the FWS‐TEHG charges a 19 mF capacitor at an average charging rate of ≈0.58 W h−1, powering a water‐level alarm. In oceanic conditions, the FWS‐TEHG effectively harvests energy from water waves by exhibiting an output frequency approximately four to five times higher than that of the primary frequency of ocean waves, thus enabling it to power electrical devices such as temperature–humidity meters efficiently. This study provides a valuable reference for advancing the practical application of nanogenerators in natural ocean environments.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3