Brain cancer classification based on multistage ensemble generative adversarial network and convolutional neural network

Author:

Melekoodappattu Jayesh George1ORCID,Kandambeth Puthiyapurayil Chaithanya2,Vylala Anoop3ORCID,Sahaya Dhas Anto1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering Vimal Jyothi Engineering College Kannur Kerala India

2. Department of Electronics and Communication Engineering Sree Narayana Guru College of Engineering & Technology Kannur Kerala India

3. Department of Electronics and Communication Engineering Jyothi Engineering College Thrissur Kerala India

Abstract

AbstractAn advanced approach that capitalizes on the synergies between multimodal feature fusion and the dual‐path network is presented in this manuscript. Our proposed methodology harnesses a combination of potent techniques, merging the benefits of nonlinear mapping and expansive perception. The foundation of our methodology lies in leveraging well‐established pretrained models, namely EfficientNet‐B7, ResNet‐152, and a meticulously crafted custom convolutional neural network (CNN), to effectively extract salient features from the data. These models are combined in a two‐stage ensemble approach. We employ maximum variance unfolding (MVU) to select the most relevant attributes from the extracted features. In this study, we propose a hybrid approach that integrates a generative adversarial network and Neural Autoregressive Distribution Estimation (NADE‐K) with a CNN. The resulting two‐stage ensemble hybrid CNN model achieves an accuracy of 99.63%. The implementation of the two‐stage ensemble hybrid CNN with MVU demonstrates significant improvements in brain tumor classification.

Publisher

Wiley

Subject

Cell Biology,Clinical Biochemistry,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3